Friday, January 6, 2017

Jonathan Tallant: Numberphile: Do numbers EXIST?

Jonathan Tallant


  • Mathematical Platonism
  • Numbers exist out side of space and time?
  • Abstract object
  • Mathematical Nominalism
  • Mathematical fictionalism
  • Pi is long and useful approximation?
  • Nominalism (唯名論(ゆいめいろん))

Ann Makosinski: Teen inventor lands on Forbes 30 under 30 list

Ann Makosinski

コンピュータ囲碁研究会: 囲碁電王戦特番 (2016/11/17)

Cho Chikun
Hirofumi Ohashi
Nao Mannami


  • Yoshio Ishida (石田芳夫) 
  • Hirofumi Ohashi (大橋拓文) 
  • Nao Mannami (万波奈穂) 
  • Hiroshi Yamashita (山下宏)

Thank you Tatsuo (サンキュータツオ) & Kyoukei Arakawa (荒川強啓) & Chiaki Katagiri (片桐千晶): 荒川強啓 デイ・キャッチ!: 謎のオンライン棋士はアルファ碁の新型だった?

Thank you Tatsuo
Kyoukei Arakawa
Chiaki Katagiri

Wednesday, January 4, 2017

MathJax: MathML

e x = n = 0 1 n ! x n

Latex: Fractions (分数)

Shorthand (Fraction):

\frac{1}{2}


Output:

\(
\frac{1}{2}
\)


Shorthand (Fraction large):

\displaystyle
\frac{1}{2}


Output:

\(
\displaystyle
\frac{1}{2}
\)


Shorthand (Fraction and parentheses or bracket):

\left(\frac{1}{2}\right)^2


Output:

\(
\left(\frac{1}{2}\right)^2
\)


Shorthand (Continued fraction (連分数)):

\displaystyle
\frac{a + b}{c + \frac{d}{e}}


Output:

\(
\displaystyle
\frac{a + b}{c + \frac{d}{e}}
\)

Tuesday, January 3, 2017

コーシー・リーマンの関係式&コーシーの積分公式

式\eqref{eq:Cauchy-Riemann}はコーシー・リーマンの関係式です. \begin{align} &\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}& &\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}& \tag{1} \label{eq:Cauchy-Riemann} \end{align} そして,式\eqref{eq:Cauchy-int}はコーシーの積分公式です. \begin{align} \oint_C \frac{f(z)}{z-z_0}=2\pi i f(z_0) \tag{2} \label{eq:Cauchy-int} \end{align}

ガウスの発散定理

ガウスの発散定理は, \begin{align} \int_V \nabla\cdot AdV=\int_S A\cdot n dS \tag{1} \label{eq:gauss} \end{align} です.式\eqref{eq:gauss}は,微分の体積分はものの関数の面積分になる,と言っています.

二階の反対称テンソル

二階の反対称テンソル \begin{align*} f_{\mu\lambda}= \begin{bmatrix} 0 & cB_z & -cB_y & -iE_x \\ -cB_z & 0 & cB_x & -iE_y \\ cB_y & -cB_x & 0 & -iE_z \\ iE_x & iE_y & iE_z & 0 \end{bmatrix} \end{align*} になる.

オイラーの公式

有名なオイラーの公式は,\(e^{i\theta}=\cos\theta+i\sin\theta\) です.