Brian Butterworth |
Friday, January 6, 2017
Jonathan Tallant: Numberphile: Do numbers EXIST?
コンピュータ囲碁研究会: 囲碁電王戦特番 (2016/11/17)
Cho Chikun |
Hirofumi Ohashi |
Nao Mannami |
- Yoshio Ishida (石田芳夫)
- Hirofumi Ohashi (大橋拓文)
- Nao Mannami (万波奈穂)
- Hiroshi Yamashita (山下宏)
ラベル:
Computer Go,
People,
コンピュータ囲碁,
囲碁
Thursday, January 5, 2017
Wednesday, January 4, 2017
Latex: Fractions (分数)
Shorthand (Fraction):
\frac{1}{2}
Output:
\(
\frac{1}{2}
\)
Shorthand (Fraction large):
\displaystyle
\frac{1}{2}
Output:
\(
\displaystyle
\frac{1}{2}
\)
Shorthand (Fraction and parentheses or bracket):
\left(\frac{1}{2}\right)^2
Output:
\(
\left(\frac{1}{2}\right)^2
\)
\displaystyle
\frac{1}{2}
Output:
\(
\frac{1}{2}
\)
Shorthand (Fraction large):
\displaystyle
\frac{1}{2}
Output:
\(
\displaystyle
\frac{1}{2}
\)
Shorthand (Fraction and parentheses or bracket):
\left(\frac{1}{2}\right)^2
Output:
\(
\left(\frac{1}{2}\right)^2
\)
Shorthand (Continued fraction (連分数)):
\displaystyle
\frac{a + b}{c + \frac{d}{e}}
Output:
\(
\displaystyle
\frac{a + b}{c + \frac{d}{e}}
\)
\(
\displaystyle
\frac{a + b}{c + \frac{d}{e}}
\)
ラベル:
Bracket,
Continued fraction,
Fraction (mathematics),
LaTeX,
MathJax,
分数,
括弧,
連分数
Tuesday, January 3, 2017
コーシー・リーマンの関係式&コーシーの積分公式
式\eqref{eq:Cauchy-Riemann}はコーシー・リーマンの関係式です.
\begin{align}
&\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}&
&\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}&
\tag{1}
\label{eq:Cauchy-Riemann}
\end{align}
そして,式\eqref{eq:Cauchy-int}はコーシーの積分公式です.
\begin{align}
\oint_C \frac{f(z)}{z-z_0}=2\pi i f(z_0)
\tag{2}
\label{eq:Cauchy-int}
\end{align}
二階の反対称テンソル
二階の反対称テンソル
\begin{align*}
f_{\mu\lambda}=
\begin{bmatrix}
0 & cB_z & -cB_y & -iE_x \\
-cB_z & 0 & cB_x & -iE_y \\
cB_y & -cB_x & 0 & -iE_z \\
iE_x & iE_y & iE_z & 0
\end{bmatrix}
\end{align*}
になる.
Subscribe to:
Posts (Atom)