Friday, January 6, 2017
Al Jazeera: The basic income experiment (ベーシックインカム導入実験)
Femi Oke
Malika Bilal
Guy Standing (economist)
Marjukka Turunen
Oren Cass
Daniel Hemel
Scott Santens
Share going to capital vs. labor
James Grime: Numberphile: abc Conjecture
James Grime
Shinichi Mochizuki
Shinichi Mochizuki (望月新一)
Inter-universal Teichmüller theory
Brian Butterworth: Numberphile: Dyscalculia
Brian Butterworth
Shinjuku Station (新宿駅): World's Biggest Station (世界最大の駅)
Jonathan Tallant: Numberphile: Do numbers EXIST?
Jonathan Tallant
Mathematical Platonism
Numbers exist out side of space and time?
Abstract object
Mathematical Nominalism
Mathematical fictionalism
Pi is long and useful approximation?
Nominalism (唯名論(ゆいめいろん))
Ann Makosinski: Teen inventor lands on Forbes 30 under 30 list
Ann Makosinski
コンピュータ囲碁研究会: 囲碁電王戦特番 (2016/11/17)
Cho Chikun
Hirofumi Ohashi
Nao Mannami
Yoshio Ishida (石田芳夫)
Hirofumi Ohashi (大橋拓文)
Nao Mannami (万波奈穂)
Hiroshi Yamashita (山下宏)
Thank you Tatsuo (サンキュータツオ) & Kyoukei Arakawa (荒川強啓) & Chiaki Katagiri (片桐千晶): 荒川強啓 デイ・キャッチ!: 謎のオンライン棋士はアルファ碁の新型だった?
Thank you Tatsuo
Kyoukei Arakawa
Chiaki Katagiri
Thursday, January 5, 2017
Master (AlphaGo) vs. Ke Jie (柯潔): Jan 3, 2007
Ke Jie
Linus Sebastian: $300 CPU Beats $4000 CPU?? - Cores vs clockspeed for video encoding
Linus Sebastian
Linus Sebastian: Intel CPU Innovation.. or Lack Thereof?
Linus Sebastian
Wednesday, January 4, 2017
MathJax: MathML
e
x
=
∑
n
=
0
∞
1
n
!
x
n
Latex: Fractions (分数)
Shorthand (Fraction):
\frac{1}{2}
Output:
\(
\frac{1}{2}
\)
Shorthand (Fraction large):
\displaystyle
\frac{1}{2}
Output:
\(
\displaystyle
\frac{1}{2}
\)
Shorthand (Fraction and parentheses or bracket):
\left(\frac{1}{2}\right)^2
Output:
\(
\left(\frac{1}{2}\right)^2
\)
Shorthand (Continued fraction (連分数)):
\displaystyle
\frac{a + b}{c + \frac{d}{e}}
Output:
\(
\displaystyle
\frac{a + b}{c + \frac{d}{e}}
\)
Tuesday, January 3, 2017
コーシー・リーマンの関係式&コーシーの積分公式
式\eqref{eq:Cauchy-Riemann}はコーシー・リーマンの関係式です. \begin{align} &\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}& &\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}& \tag{1} \label{eq:Cauchy-Riemann} \end{align} そして,式\eqref{eq:Cauchy-int}はコーシーの積分公式です. \begin{align} \oint_C \frac{f(z)}{z-z_0}=2\pi i f(z_0) \tag{2} \label{eq:Cauchy-int} \end{align}
Newer Posts
Older Posts
Home
Subscribe to:
Comments (Atom)